1st Post WoCoVA "De Patiënt Centraal Amersfoort, 9 okt. 2018

Health Economic Benefits of Chlorhexidine Gluconate Dressings

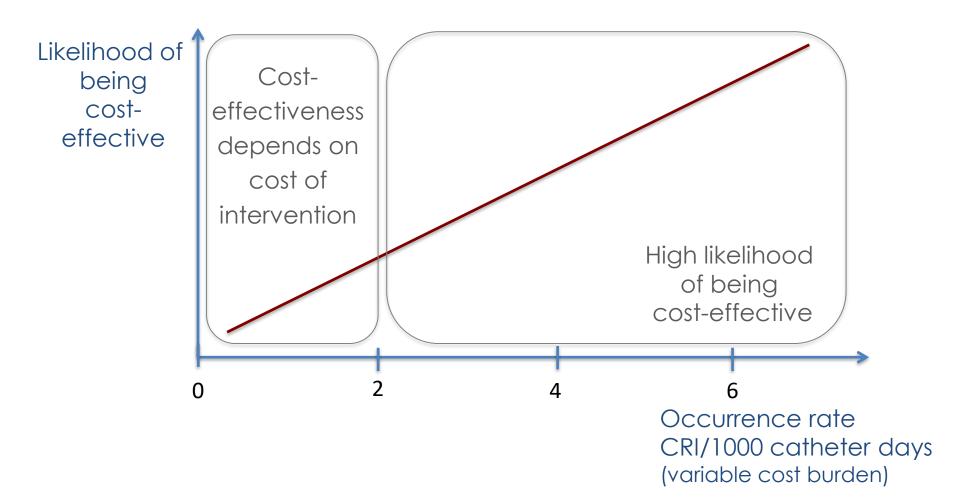
Stijn BLOT

Dept. of Internal Medicine Faculty of Medicine & Health Science Ghent University, Ghent, Flanders (Belgium)

Burns Trauma and Critical Care Research Centre The University of Queensland, Herston, Brisbane (Australia)

Estimates of economic outcomes in CR-BSI

Author, year	n	Excess ICU stay (d.)	Excess hospital stay (d.)	Excess cost
Warren D, 2006	41	2.4	7.5	\$ 11 971
Higuera F, 2007	55	6.1	-	\$ 11 591
Blot S, 2005	176	8	12	€ 13 858
Schwebel C, 2012	1636	11	-	\$ 24 090 (~€ 18.000)


Excess cost is mainly driven by excess length of stay

Essentials of Cost-Effectiveness

- Innovation is expensive
- Partially reflected in prize/unit on the market
- Cost-effectiveness (cost of investment < cost savings) depends on:
 - o Prize / unit
 - Consumption of units
 - Cost of the infection
 - Number of infections that will be avoided
 - ~ Baseline infection rate (\rightarrow preventable portion)

Cost-effective prevention of CR-BSI

Potential of cost-effectiveness depends on occurrence rate (number of cases to be prevented).

Chlorhexidine-Impregnated Sponges and Less Frequent Dressing Changes for Prevention of Catheter-Related Infections in Critically III Adults A Randomized Controlled Trial

	CHG-impregnated sponges	Control dressing	HR (95% CI)
Major CRI	10/1953 (0.5%) 0.6 / 1000 cath. days	19/1825 (1.1%) 1.4 / 1000 cath. days	0.39 (0.17 – 0.93)
CR-BSI	6 /1953 (0.3%) 0.4 1000 cath. days	17/1825 (0.9%) 1.3 1000 cath. days	0.24 (0.09 – 0.65)

• Dressing changes /7 days not inferior to /3 days (!)

Timsit JF, et al. JAMA 2009

Dressing disruption is a major risk factor for catheter-related infections*

- Secondary analysis of RCT
- Risk of CRI increased with number of dressing disruptions:

○ 1st disruption: HR 1.9 (95% CI, 0.5 – 7.5)

- 2nd disruption: HR 3.3 (95% CI, 1.2 9.0)
- 3rd disruption: HR 12.5 (95% CI, 4.0 39.6)

Timsit JF, et al. Crit Care Med 2012

Current insights

- Continuous exposure of CHG at the insertion site reduces the risk of CRI
- Dressing changes /7 days is not inferior to /3 days
- Dressing disruption is a risk factor for CRI

Remaining issues...

- Practical issues with manipulating sponge
- Impossible to inspect insertion site of the catheter without dressing removal
- Effectiveness of highly adhesive dressing unresolved

Randomized Controlled Trial of CHG-Dressing and Highly Adhesive Dressing for Preventing Catheter-Related Infections in ICU Patients

Study Methods

- Assessor blinded randomized trial
- Patients with expected catheterization of > 48 hours
- 12 French ICU's

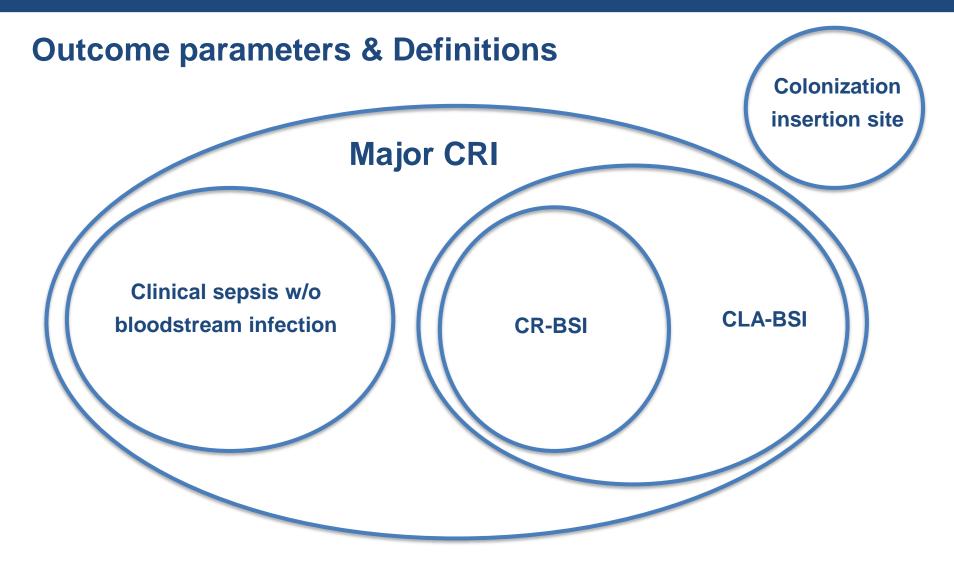
Randomized Controlled Trial of CHG-Dressing and Highly Adhesive Dressing for Preventing Catheter-Related Infections in ICU Patients

Study Methods: 3 study groups:

(1) Tegaderm CHG

- Chlorhexidine-gluconate dressing
- Only dressing available combining transparency and CHG
- 50% of patients

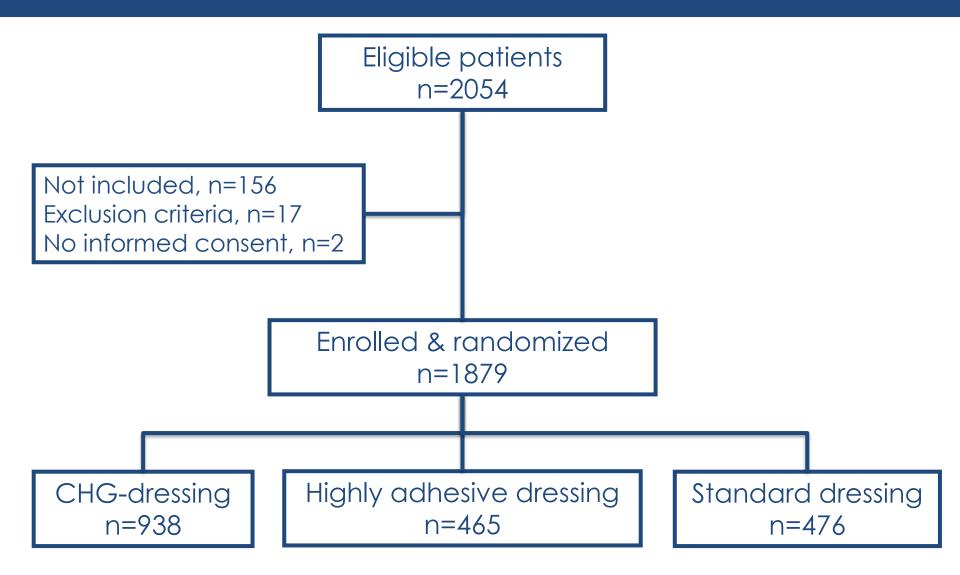
(2) Tegaderm HP


- highly adhesive dressing
- 25% of patients

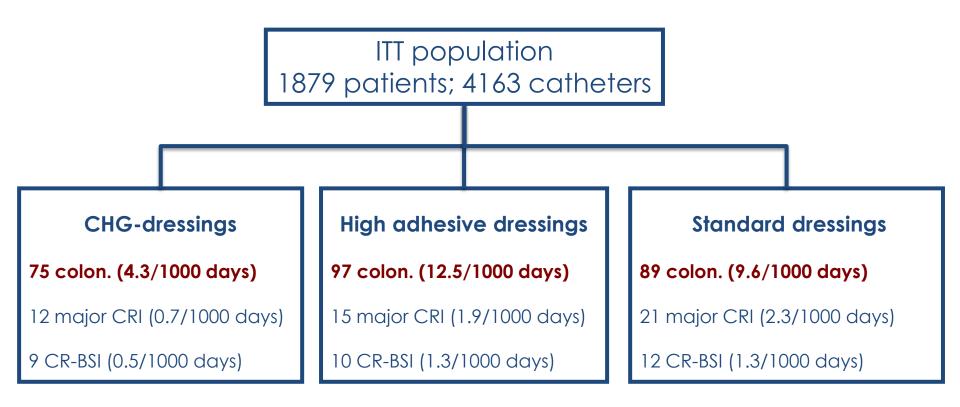
(3) Tegaderm IV

- standard dressing
- 25% of patients

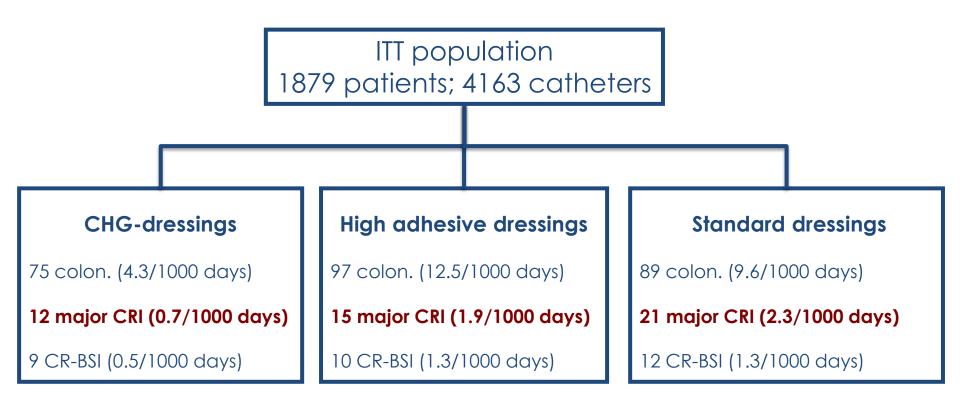
Randomized Controlled Trial of CHX-Dressing and Highly Adhesive Dressing for Preventing Catheter-Related Infections in ICU Patients

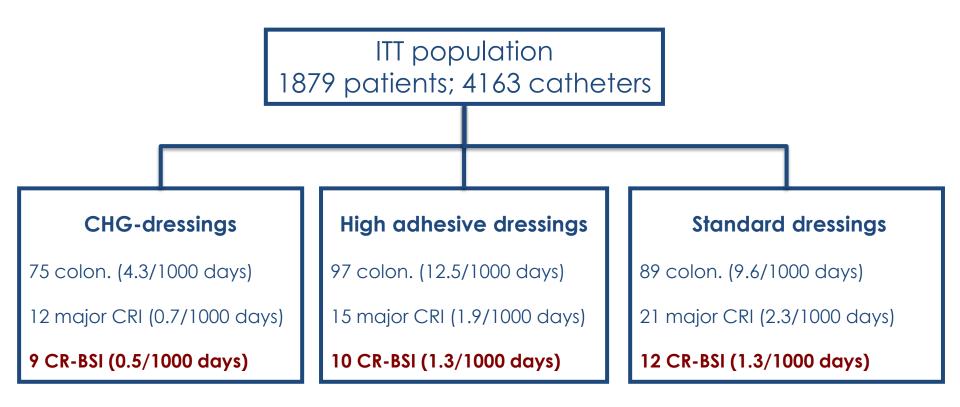


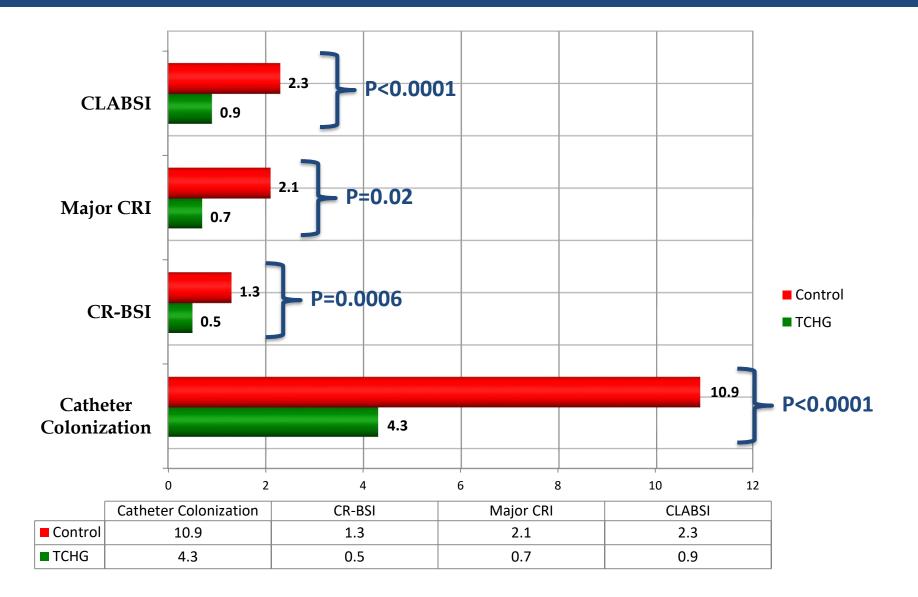
Primary endpoints


• Major CRI rate for CHG- vs. non-CHG-dressings

• Catheter colonization rate for highly adhesive dressing (non-CHG) vs. standard dressings (non-CHG)


Study Flow Chart





Results: CHG vs. (highly adhesive + control)

Randomized Controlled Trial of CHG-Dressing and Highly Adhesive Dressing for Preventing Catheter-Related Infections in ICU Patients

Conclusion on Tegaderm CHG

- The only dressing available combining transparency and CHG
- Proven to reduce CRI risk
- Cost-effective?

Simulation

14-bed ICU 1300 admissions / year Average length of catheterization: 5 days CVC-days: 6500 / year

Number of dressing changes:

6500 CVC-days / 7d. = 929 6500 CVC-days / 3d. = 2166

Type of dressing	Cost/unit	Dressing changes/7d.	Dressing changes/3d.
CHG	€ 6,00	€ 5.574,00	€ 12.996,00
		(929 dressing changes × € 6,00)	(2166 dressing changes × € 6,00)
Standard	€ 0,40	€ 371,60	€ 866,40
		(929 dressing changes × € 0,40)	(2166 dressing changes × € 0,40)

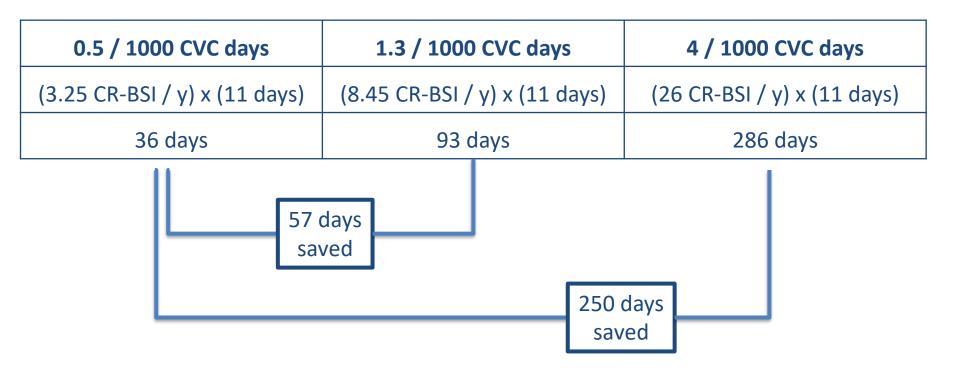
CR-BSI occurrence rate in the unit

Standard dressing: 1.3 CR-BSI / 1000 CVC-days → 8.45 CR-BSI / y
CHG-dressing: 0.5 CR-BSI / 1000 CVC-days → 3.25 CR-BSI / y

	Cost / CR-BSI		
	€ 18.000		
CR-BSI rate	1.3/1000		
Total CR-BSI cost (€)	152.100		
Investments (€)	866		
Total cost (€)	152.966		

	Cost / CR-BSI			
	€ 18.000			
CR-BSI rate	1.3/1000 0.5/1000			
Total CR-BSI cost (€)	152.100 58.500			
Investments (€)	866 12.996			
Total cost (€)	152.966 71.466			

	Cost / CR-BSI			
	€ 18.000			
CR-BSI rate	1.3/1000 0.5/1000			
Total CR-BSI cost (€)	152.100 58.500			
Investments (€)	866 12.996			
Total cost (€)	152.966 71.466			
Cost savings (€)	81.500			


	Cost / CR-BSI				
	€ 18	.000	€ 13.500		
CR-BSI rate	1.3/1000 0.5/1000		1.3/1000	0.5/1000	
Total CR-BSI cost (€)	152.100 58.500		114.075	43.875	
Investments (€)	866 12.996		866	12.996	
Total cost (€)	152.966 71.466		114.941 56.841		
Cost savings (€)	81.!	500	58.100		

	Cost / CR-BSI					
	€ 18.000		€ 13.500		€ 6.000	
CR-BSI rate	1.3/1000	0.5/1000	1.3/1000	0.5/1000	1.3/1000	0.5/1000
Total CR-BSI cost (€)	152.100	58.500	114.075	43.875	50.700	19.500
Investments (€)	866	12.996	866	12.996	866	12.996
Total cost (€)	152.966	71.466	114.941	56.841	51.566	32.496
Cost savings (€)	81.500		58.100		19.070	

- Simulation starts from the assumption that current CR-BSI rate is (only) 1.3 / 1000 CVC days!!
- The average CR-BSI rate is estimated 3-5 / 1000 CVC days

	Cost / CR-BSI					
	€ 18.000		€ 13.500		€ 6.000	
CR-BSI rate	4.0/1000	0.5/1000	4.0/1000	0.5/1000	4.0/1000	0.5/1000
Total CR-BSI cost (€)	468.000	58.500	351.000	43.875	156.00	19.500
Investments (€)	866	12.996	866	12.996	866	12.996
Total cost (€)	468.866	71.466	351.866	56.841	156.866	32.496
Cost savings (€)	397.400		295.025		124.370	

- Effect in terms of saved hospitalization days...
 - Average added length of stay: 11 days

Conclusion

- CR-BSI is associated with significant morbidity and cost
- CR-BSI is highly preventable
- Tegaderm CHG:
 - combines transparency & CHG
 - o significantly reduce the risk of CR-BSI
 - CHG-dressings are highly cost-effective